Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction.

نویسندگان

  • G S Supinski
  • J Vanags
  • L A Callahan
چکیده

Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) can prevent sepsis-induced diaphragm weakness. Rats were given either 1) saline (0.5 ml ip), 2) endotoxin (12 mg/kg ip), 3) endotoxin plus MG132 (2.5 mg/kg), 4) endotoxin plus epoxomicin (1 micromol/kg), or 5) endotoxin plus bortezomib (0.05 mg/kg). Animals were killed either 48 or 96 h after injections, and assessments were made of diaphragm proteolysis, force-frequency relationships, mass, protein content, and caspase activation. Endotoxin increased proteolysis (P <0.001). MG132, epoxomicin, and bortezomib each prevented the endotoxin-induced increase in proteolysis (P <0.01). Endotoxin induced severe reductions in diaphragm force generation by 48 h (P <0.01); none of the proteasomal inhibitors prevented loss of force. Endotoxin induced significant reductions in diaphragm mass and protein content by 96 h (P <0.01); neither MG132 nor epoxomicin prevented loss of mass or protein, but bortezomib attenuated the reduction in protein content (P <0.05). Endotoxin increased diaphragm caspase-3 activity (P <0.01); caspase-3 activity remained high when either MG132, epoxomicin, or bortezomib were given. These data suggest proteasomal inhibitors are not an adequate treatment to prevent endotoxin-induced diaphragmatic dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Bioflavonoid Quercetin on Endotoxin-Induced Hepatotoxicity and Oxidative Stress in Rat Liver

Septicaemia caused by gram-negative pathogens is a dangerous infection which is associated with high incidence of liver dysfunction. The severe and acute hepatotoxicity is presumably due to massive release of endotoxin into systemic circulation after bacterial killing. The direct toxic effect of endotoxin is probably due to the increased production of reactive oxygen intermediates as O 2 - , p...

متن کامل

The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction.

The mechanisms by which infections induce diaphragm dysfunction remain poorly understood. The purpose of this study was to determine which caspase pathways (i.e., the extrinsic, death receptor-linked caspase-8 pathway, and/or the intrinsic, mitochondrial-related caspase-9 pathway) are responsible for endotoxin-induced diaphragm contractile dysfunction. We determined 1) whether endotoxin adminis...

متن کامل

Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration

INTRODUCTION Infections produce severe respiratory muscle weakness, which contributes to the development of respiratory failure. An effective, safe therapy to prevent respiratory muscle dysfunction in infected patients has not been defined. This study examined the effect of eicosapentaenoic acid (EPA), an immunomodulator that can be safely administered to patients, on diaphragm force generation...

متن کامل

Apocynin improves diaphragmatic function after endotoxin administration.

Free radicals are known to play an important role in modulating the development of respiratory muscle dysfunction during sepsis. Moreover, neutrophil numbers increase in the diaphragm after endotoxin administration. Whether or not superoxide derived from infiltrating white blood cells contributes to muscle dysfunction during sepsis is, however, unknown. The purpose of the present study was to e...

متن کامل

Caspase activation contributes to endotoxin-induced diaphragm weakness.

Infections produce significant respiratory muscle weakness, but the mechanisms by which inflammation reduces muscle force remain incompletely understood. Recent work suggests that caspase 3 releases actin and myosin from the contractile protein lattice, so we postulated that infections may reduce skeletal muscle force by activating caspase 3. The present experiments were designed to test this h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 296 6  شماره 

صفحات  -

تاریخ انتشار 2009